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Abstract We numerically test the correspondence between the scaling limit of self-avoiding
walks (SAW) in the plane and Schramm-Loewner evolution (SLE) with κ = 8/3. We intro-
duce a discrete-time process approximating SLE in the exterior of a small disc and compare
the distribution functions for an internal point in the SAW and a point at a fixed fractal vari-
ation on the SLE, finding good agreement. This provides numerical evidence in favor of a
conjecture by Lawler, Schramm and Werner. The algorithm turns out to be an efficient way
of computing the position of an internal point in the SAW.

Keywords Schramm-Loewner evolution · Self-avoiding walk · Distribution function

1 Introduction

Schramm-Loewner evolution (SLE) is a family of random processes on conformal maps,
which gives rise to a one-parameter family of measures on curves satisfying conformal in-
variance. It was first introduced in [1] to describe the scaling limit of loop-erased random
walks, but it was soon found to correspond to a large family of geometrical objects defined
in the context of lattice models. The latter include interfaces in critical models—e.g. the
interface between phases in the Ising model or the boundary of the percolating cluster in
critical percolation—and walk models, such as the self-avoiding walk in the scaling limit.
A wealth of results have been obtained for SLE in the chordal geometry, which involves
curves starting and ending on points lying on the boundary of some connected domain, and
in the radial geometry, where one of the points is on the boundary and the other is in the
bulk. Much less has been proved or checked in the whole-plane geometry, where both the
starting and ending points lie in the bulk, such as the points 0 and ∞ in C.

In this paper we consider SLE in the whole plane and compare it with the planar self-
avoiding walks (SAW). The correspondence between the two models has been conjectured
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by Lawler, Schramm and Werner in [2], on the basis of restriction covariance and conformal
invariance. In particular, we will compare the scaling forms of the distribution functions in
the two models. The distribution function is essentially the probability density P (r) that
some—suitably defined—point lies at r on the complex plane. For this purpose, one has to
be careful about which points along the curves have to be considered. On the SLE side, a
suitable parametrization must be chosen; we will rely on parametrization by fractal varia-
tion, and will pick the point at a fixed value of this parametrization. On the SAW side, we are
going to consider an internal point deep inside the walk, so as to avoid finite-chain effects.
Thanks to the scaling relation between the fractal variation and the natural parametrization
of SLE, and to the fact that the discrete chains are sampled independently, this turns out to
be a potentially efficient method for computing the distribution function of an internal point
in the SAW, since it produces independent samples of length L in time O(L1.5) with room
for easy improvement.

The plan of the paper is as follows. In Sect. 2 we quickly review the relevant facts and
definitions about Schramm-Loewner evolutions and self-avoiding walks; in Sect. 3 we intro-
duce and discuss the discrete process we will be simulating in the whole plane; in Sect. 4 we
define the distribution function and its conjectured scaling behavior; in Sect. 5 we present
our numerical results; the appendix deals with the scaling of the average step length and the
hull size in discrete SLE.

2 Definitions and Background

SLE is a widely studied and reviewed subject, see e.g. [3, 4] for an introduction. Here we will
only recall the main ingredients, in order to make this paper as self-contained as possible.

SLE is a stochastic differential equation describing the evolution of a parametrized fam-
ily of conformal maps gt in a domain D. The actual form of the equation depends on the
geometry, but in general it is written in terms of a function taking values on the boundary
of D, called driving function. The driving function is rescaled Brownian motion

√
κBt living

on the boundary; κ is a positive constant. The maps gt map some (t -dependent) subset of D
onto D, so that one can define the growing hull Kt as the domain of gt , i.e. the set of points
for which the differential equation still has a solution up to time t . The hull turns out to be
generated by a curve γ (t), i.e. it is the union of the image of the curve with the interior of
any loop it has closed. The curve—also called the trace of the process—is the pre-image of
the driving function under gt :

gt (γ (t)) = √
κBt . (1)

As the variance κ of the Brownian driving function varies, the properties of γ (t) change
dramatically, and very different models have been proved or conjectured to be described by
SLE for some value of κ in the scaling limit. SLE has proved a useful tool for addressing
very diverse problems and questions (see for instance [5, 6] and references therein).

Interesting issues arise when one considers the reparametrization of γ (t) [7]. The SLE
equation generates the hulls with a natural parametrization, which corresponds to a linearly
growing capacity (which is a property related to the expansion of gt around some special
point and is a measure of the “conformal size” of the hull, see [8] for a precise defini-
tion). As long as one is interested in parametrization-independent observables this is not
an issue. But we will be considering the distribution function of the point γ (t) for some
fixed t , so the choice of parametrization is clearly essential here. One way of dealing with
this problem in the context of a numerical work is to generate the curves already with the
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correct parametrization—here correct means the one corresponding to the parametrization
by length of the SAW. The technical issue of producing discrete SLE traces parametrized by
length will be treated elsewhere. In this paper instead we will take advantage of a technique
introduced by Kennedy [9], which consists in defining a suitable notion of length along the
discretized curve, and using it as the parametrization (see Sect. 3).

A self-avoiding walk ω on the square lattice with a fixed number of steps N is an ordered
collection ω = {ω0, . . . ,ωN } with ωi ∈ Z

2, such that |ωi − ωi−1| = 1 and ωi �= ωj for i �= j .
The SAW model is the uniform measure on these objects, i.e. on all non-intersecting N -step
nearest-neighbor walks [11].

A numerical check of the equivalence between the distribution functions of SLE and
SAW in the half plane has been carried out in [9], with positive results.

3 Discrete Whole-Plane SLE

Simulation of SLE in the half plane H is usually based on the discrete process introduced in
[12], where it is also proved that it converges weakly to SLE. Here we introduce a whole-
plane version of this discrete process.

The idea (see also [10]) is to write the Loewner map as a composition of (finitely many)
conformal maps, chosen from a simple parametrized family. Time is partitioned by letting
0 = t0 < t1 < · · · . The driving function is defined in such a way as to be equal to

√
κBtk at

the special times tk and constant in between. This amounts to approximating the Brownian
motion with a piecewise constant function, so that the incremental maps Gk = gtk ◦ g−1

tk−1
are

obtained by solving the Loewner equation with constant driving function up to time tk − tk−1.
Let us denote ξt ≡ √

κBt . Consider the radial SLE equation

d

dt
g̃t (z) = g̃t (z)

exp(iξt ) + g̃t (z)

exp(iξt ) − g̃t (z)
, g̃0(z) = z (2)

which describes a hull starting from exp (iξ0) and growing towards the origin inside the unit
disc D. In analogy with the half-plane case, the hull Kt at time t is defined as the set of those
points in D for which the differential equation does not admit a solution that exists up to
time t . By composition with the complex inversion (z �→ 1/z) one can define the map

gt (z) = 1

g̃t (1/z)
(3)

which now describes a hull growing in C \ D from exp (−iξ0) to ∞. The new map in (3)
happens to satisfy the same equation (2), again with initial condition g0(z) = z, but now
with driving function −ξt , which has the same law as ξt if started from ξ0 = 0. This process
is called radial SLE growing to infinity. Notice that gt does not describe a curve truly in the
whole plane, since the unit disc is a forbidden region. However, we are going to focus on the
large-scale regime in the following, and expect the cutoff at length scale 1 to be irrelevant in
this limit.

The discrete process is based on the discretization of the evolution of the inverse map
g−1

t . This map grows the hull at time t , i.e. it maps C \ D onto the complement of the hull
in C \ D. The atomic step of the discretization will be performed by a map—which we are
going to call incremental—that grows a slit (a small radial segment) out of the unit disc.
Obtaining this map is simply a matter of solving (2) in the special case when the driving
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Fig. 1 (Color online) A visualization of the discrete process. The leftmost arrow corresponds to the action
of Rδk

◦ φ�k
, the second corresponds to Rδk−1 ◦ φ�k−1 , and so on. The blue cross is the point 1, where the

next slit will be based

function is constant, thus finding the Loewner map corresponding to a straight line growing
towards infinity; the incremental map is its inverse. The result is1

φt (z) = 1

2e−t z

[
(z + 1)2 − 2e−t z − (z + 1)

(
(z + 1)2 − 4e−t z

)1/2
]
. (4)

The greater the time t is, the longer will be the line grown by φt . In the language of potential
theory, one says that the hull grown by φt has logarithmic capacity t .

Brownian motion driving the evolution lives on the boundary of the standard domain,
which is the upper half plane in the chordal case, the unit disc in the radial case and the
complement of D in C in the case at hand. Notice that, by translation invariance, chordal
SLE in H growing from ξ0 to ∞ is chordal SLE growing from 0 to ∞ translated by ξ0,
so that in simulating the discrete process one usually translates ξt back to the origin after
each iteration. Translations are replaced by rotations in the radial case. Therefore, at each
step we will want to rotate exp (iξt ) back to 1. The whole discretized hull will be generated
by alternately composing an incremental map with a rotation. Let us call �k the logarith-
mic capacity of the incremental map at the k-th step (i.e. the time at which the k-th map is
evaluated), and correspondingly let δk denote the angle of the k-th rotation. The incremen-
tal map and the rotation themselves will then be denoted φ�k

and Rδk respectively, where
Rδk (z) = z exp (iδk). Let γk be the image of 1 under the composed map at step k

γk = Rδ1 ◦ φ�1 ◦ · · · ◦ Rδk ◦ φ�k
(1). (5)

Notice that the order in which the maps are composed is the opposite as the usual one; this
is essentially a consequence of the fact that we are discretizing the inverse Loewner map.
The approximate curve we are interested in is embodied by the collection of points {γk}.

Refer to Fig. 1. The first map grows a slit based at point 1, which is then rotated to
exp (iδk). The second map again grows a slit based at 1, so that the old slit will be sent away
from the unit disc, and will be based somewhere between 1 and the tip of the new slit (notice
that the old slit will not in general retain its rectilinear shape). Then the whole hull is rotated
by δk−1 and another slit is grown. When the last composition with Rδ1 ◦ φ�1 is reached, the
k-th point on the trace is found. The process is repeated for each point γk that has to be
computed.

The resulting trace depends on the choice of the time-like parameters {�k} and the space-
like parameters {δk}. In analogy with the chordal half-plane case [12] we choose to draw
each δk as a Bernoulli variable in the set {−√

κ�k,+√
κ�k}. This choice amounts to ap-

proximating the Brownian motion with a piecewise constant function, the relation between

1Some care must be taken in choosing the right sign before the square root and the position of the branch cut
of the square root itself, so that a point outside D be mapped to a point outside D. The conformal map in (4)
already appeared in the literature about diffusion limited aggregates [13], where it was used to represent the
attachment of a single grain onto the cluster.
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�k and δk reproducing the well-known space-time scaling of Brownian motion with vari-
ance κ . One has additional freedom in choosing the time intervals {�k}. Changing the latter
corresponds to a reparametrization of the resulting trace. The uniform partition �k = �

yields the parametrization by capacity, i.e. the natural SLE parametrization where the hull
increases its capacity linearly in time. The choice of parametrization is crucial for our pur-
poses, since we are interested in the spatial distribution function, which is a parametrization-
dependent observable. In order to reproduce the correct parametrization (that corresponding
to the natural parametrization of the supposed scaling limit of self-avoiding walks) we use
the following method. First, we fix a scale λ. Then, at each step, we compute the fractal
variation of the curve as follows. Let k0 = 0. Times {ki}i=1...n are defined recursively: given
ki , ki+1 is the first time after ki such that |γki+1 − γki

| ≥ λ. The fractal variation at step k is
defined as

varλ({γ0, . . . , γk}) = nλdf . (6)

where n is the largest integer such that kn ≤ k, and df is the fractal dimension of continuum
SLE as a function of κ [14]

df = 1 + κ

8
. (7)

The growth process will be stopped when varλ reaches a fixed value ϒ . This procedure
has the advantage of being independent of the original parametrization of γ . Nonetheless,
it is sensitive to discretization problems, for instance when the steps taken by the trace γk

become too wide with respect to λ. A uniform partition �k = � causes the average step
length at step k, lk = 〈|γk − γk−1|〉, to diverge2 as the number of steps k grows (the average
is over all realizations of the process up to step k). To avoid approximation problems we
choose the time intervals �k in a non-uniform fashion, having them scale as

�k ∼ k−1 (8)

so as to compensate for the divergence of the average step length (see the Appendix for
details). We can then define l = lk , at least for k large enough.

The discrete process is defined operatively as follows:

(i) Fix the three scales l, λ and ϒ ; start with k = 1
(ii) Choose �k according to (8)

(iii) Draw δk uniformly in {−√
κ�k,+√

κ�k}
(iv) Calculate γk as in (5)
(v) Measure the fractal variation (6)

(vi) If varλ({γ0, . . . , γk}) ≥ ϒ stop, otherwise increase k and return to (ii).

Notice that the time when the fractal variation reaches ϒ depends on the scale λ it is
measured at, which should be sent to 0 in order to obtain the true fractal variation. Of course,
the curve obtained by means of the discrete process defined above is not really fractal at all,
but it displays fractal properties only at a large enough scale. Therefore, values of λ much
less than the average step length are expected to yield the trivial parametrization. On the
other hand when λ becomes comparable to ϒ1/df , varλ suffers from rounding problems. We
will keep λ between these two cutoffs, and study how results depend on this choice.

An example of the composed map after a few iteration is in Fig. 2.

2This is true in the whole plane. The opposite happens in the half plane, where the average step length
converges to zero.
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Fig. 2 A visualization of the composed map in (5) after 4 iterations. The curves are the images of circles
and radii outside the unit disc

4 Distribution Function

Let us consider the M-th point in an N -step SAW ω. The probability distribution PN,M(r)
of this internal point (the probability that it lies at site r on the lattice) has the following
scaling form in the limit N,M → ∞, r → ∞, with M/N fixed:

PN,M(r) ∼ 1

ξ 2
M

fSAW

(
ρ,

M

N

)
(9)

where ρ = |r/ξM | and ξ 2
M = 〈|ωM − ω0|2〉 is the correlation length after M steps. The av-

erage 〈·〉 is on the self-avoiding walk ensemble. The universal function fSAW is the renor-
malized distribution function we are going to compare with its SLE analogue. It depends
on the ratio M/N—i.e. on how much the M-th point feels the finiteness of the chain. Since
we want the distribution of a point a finite distance away from the origin in a truly infinite
curve, we should take M/N → 0.

Let us then define the corresponding quantities for the SLE approximated trace {γk}
(k = 0, . . . ,Nϒ), where Nϒ is the number of points computed on the trace up to the stopping
time when the fractal variation has reached ϒ . We are not considering the full distribution
P (z), since the discrete process as defined above explicitly breaks rotational invariance—it
has 1 as a special point. Instead, consider the probability density Pϒ(r) that the point γk has
modulus r when k = Nϒ , then we will suppose it has the following scaling behavior in the
long-chain limit, i.e. when ϒ → ∞ and r → ∞ with step length l fixed:

Pϒ(r) ∼ 1

ξ 2
ϒ

fSLE(ρ) (10)

where ρ = r/ξϒ , and ξϒ is the correlation length

ξ 2
ϒ = 〈|γNϒ

|2〉 (11)

(the average 〈·〉 here is over all realizations of the driving function). Implicit in this con-
jectured behavior is the assumption that the presence of the unit disc as a forbidden region
be irrelevant in the long-chain limit defined above. Scaling form (10) for the distribution
function will be verified a posteriori. Notice that of course fSLE implicitly depends on κ .

In order to quantitatively compare the distributions we will focus on their moments.
It is convenient to introduce an infrared cutoff ρMAX—i.e. a window for computing the
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moments—since deviations from scaling are more pronounced in the large-ρ regime. Sup-
pose we have sampled N instances zi (i = 0, . . . , N − 1) of one point on the chain—be it
an internal point inside a SAW or the point at a fixed fractal variation on the approximated
SLE trace. We will compute the following quantities:

M2k =
∑′ |zi |2k

[∑′ |zi |2
]k

(12)

where the sums
∑′ are restricted to the window

|zi |
ξϒ

< ρMAX. (13)

We will choose ρMAX = 3 in the following, which only leaves out the tail of the distribution
(see Fig. 4).

5 Numerical Results

We simulated an ensemble of 106 self-avoiding walks of length N = 100 000 using the pivot
algorithm [15, 16]. We considered an internal point with M = 8000 (detailed analysis of the
systematic error due to the finiteness of M/N = 0.08 shows that it is negligible when com-
pared to the deviations in discrete-SLE data due to the finiteness of λ and ϒ ). The discrete
SLE process was simulated for several values of λ and ϒ , generating ∼105 independent
samples for each choice. In the following we are going to fix the average step size l and
measure everything else in units of l.

The time needed to compute the k-th point along the trace through (5) is proportional to k.
Therefore, generating an N -step chain requires a time of order N2, which can be interpreted
by saying that the time-per-point is O(N). As shown in the appendix, partitioning time as
in (8) causes the fractal variation to scale as ϒ ∼ Ndf . All together, the algorithm described
here generates chains of length ϒ in time O(ϒ2/df ), which is O(ϒ3/2) for κ = 8

3 . The time-
per-point can be probably further improved by approximating the incremental map by its
truncated Laurent series (see [10], where the numerical analysis is carried out in the half-
plane geometry, showing that the time-per-point is O(N0.4)). We shall not do that here,
but this suggests that this algorithm might get close to generating independent samples of
length ϒ in time O(ϒ), and even faster for higher values of κ . Producing 105 samples with
ϒ = 400 took about 1000 hours on an Intel Pentium 4 with 1.80 GHz CPU.3

As a preliminary test, we checked that the discrete SLE approximants approached the
expected fractal dimension (7), since knowing its precise value is crucial when computing
the fractal variation4 as in (6). For increasing values of λ we measured the number n(λ) of
segments of length λ that are needed to cover up the entire trace, in the same fashion as when
computing the fractal variation. The expected behavior is n(λ) ∼ λ−df . We checked this for
several values of κ , finding good agreement. Figure 3 shows the results for two different
values of κ . For small λ one sees the crossover to the true fractal dimension of the discrete
trace, which is of course 1.

3This is the performance of a non-optimized code: there is still room for optimization at the source code level.
4Notice that the fractal dimension does not depend on the parametrization. Actually, we reverted to parame-
trization by capacity when testing df —i.e. we stopped the discrete process at a fixed number of iterations,
without computing the variation.
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Fig. 3 (Color online) The number of segments of length λ needed to cover the trace (red crosses), for κ = 8
3

(left) and κ = 6 (right). Dashed green lines represent the theoretical slope corresponding to fractal dimension
1 + κ/8. (Error bars are smaller than the crosses representing data)

Table 1 The first five non-trivial moments of the distribution function for whole-plane SLE and SAW. ϒ is
the fractal variation computed at scale λ. Those in parentheses are the statistical errors of the sampling:
no estimate of other systematic deviations is included (here ρMAX = 3, except for the bottom line where
ρMAX = 3.5)

ϒ = 400 ϒ = 800 SAW

λ = 4 λ = 10 λ = 20 λ = 40 λ = 20

M4 1.304(10) 1.315(7) 1.320(11) 1.318(7) 1.322(9) 1.330(2)

M6 1.970(18) 2.009(14) 2.022(25) 2.008(14) 2.030(20) 2.059(5)

M8 3.267(38) 3.374(32) 3.404(55) 3.352(31) 3.428(42) 3.508(10)

M10 5.787(84) 6.045(70) 6.11(12) 5.955(68) 6.177(93) 6.379(23)

M12 10.74(18) 11.35(16) 11.48(27) 11.07(15) 11.66(21) 12.155(52)

M12 15.77(32) 16.94(27) 16.79(46) 14.92(23) 17.43(37) 18.763(94)

We are now ready to check whether fSAW ≡ fSLE for κ = 8
3 . Figure 4 is a comparative plot

of the renormalized distribution functions for the SAW and the discrete whole-plane SLE,
for two values of the variation, ϒ = 400,800 (an averaging procedure has been adopted
here, in order to smoothen oscillations due to the lattice). The distributions all fall onto the
same universal curve, apart from corrections to scaling in the extreme regimes. To quanti-
tatively check that this is the case, the moments (12) have been computed for each choice
of ϒ and for several values of λ; they are reported in Table 1, together with their SAW
values. Accordance for low-order moments is more easily established, while inspection of
high-order ones helps in recognizing systematic deviations. Let us fix ϒ = 400 first. Values
for λ = 40 suffer from severe deviations due to the coarse grained nature of the procedure
used to compute the fractal variation. On the other hand, a systematic drift in λ is present for
smaller values. The best compromise seems to lie in the middle; we will then fix λ = 20 and
increase ϒ . The moments for ϒ = 800 all lie within two standard deviations from the SAW
values, apart from the highest-order one which is close. Deviations are apparent, the SAW
values being systematically larger than the others, but again SLE moments keep increasing
as ϒ is doubled, thus approaching the expected values. As expected, these systematic cor-
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Fig. 4 (Color online) The renormalized distribution functions of SLE with ϒ = 400 (red squares) and
ϒ = 800 (green circles), and that of a point inside a SAW (blue triangles). The two plots display the same
data; the one below has logarithmic scale on the y-axis

rections get larger if the cutoff ρMAX is increased. Convergence for ρ = 3.5 (see M12 in the
bottommost line in Table 1) is slower but still consistent.

6 Conclusions

We have introduced a discrete process approximating radial Schramm-Loewner evolution
growing to infinity, by the iteration of conformal maps defined outside the unit disc. On one
hand, we have considered the distribution function of a point on the trace at a fixed value
of the fractal variation. As the fractal variation reaches infinity the distribution forgets about
the presence of the forbidden region D. On the other hand, we measured the distribution
function of a point deep inside a whole-plane self-avoiding walk. When κ = 8

3 , the two
universal functions match, thus providing evidence that the scaling limit of SAW is whole-
plane SLE. Moreover, computing the position of an internal point in a SAW by exactly
sampling the discrete SLE process seems to be an efficient algorithm, which is open to
further improvement.

Acknowledgements The author wishes to thank Tom Kennedy for useful discussions and Sergio Carac-
ciolo for helpful suggestions and a careful reading of the manuscript.
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Appendix

We justify here the scaling form (8). Let ln denote the length of the n-th step in the dis-
cretized growth, that is

ln = |γn − γn−1| . (14)

The exponential of the logarithmic capacity is a measure of the linear size of the growing
hull. This is essentially a consequence of the Koebe 1/4 theorem, which bounds the size of
the image of the unit disc D under a conformal map g in terms of g′(0). Then, by approxi-
mating (14) by

ln ∼ |γn| − |γn−1| (15)

as if it grew radially, one has

ln ∼ exp

(
n∑

k=1

�k

)
− exp

(
n−1∑
k=1

�k

)

= (
e�n − 1

)
exp

(
n−1∑
k=1

�k

)
. (16)

Setting

�k = �

k
(17)

in (16) gives

ln ∼
(

exp
�

n
− 1

)
exp (�Hn−1) (18)

where the Hn’s are the harmonic numbers, whose expansion in n is

Hn = lnn + γ + O

(
1

n

)
(19)

(γ is the Euler-Mascheroni constant). By substituting in (18) and expanding both exponen-
tials in n one gets

ln ∼
[

�

n
+ O

(
1

n2

)]
(n − 1)� e�γ

[
1 + O

(
1

n

)]
. (20)

By choosing � = 1 one finally obtains

ln ∼ eγ

[
1 + O

(
1

n

)]
(21)

which shows that scaling �k as in (8) provides an asymptotically constant step length. Con-
trary to the half-plane case—where a similar computation shows that an approximately con-
stant ln is obtained by choosing �k = k�—there is no freedom left here to choose the av-
erage step length, since � has to be fixed to 1 in order to have the correct scaling behavior.
Operatively, we keep a constant �k for a few steps, until the step length has approximately
reached the desired value l, and we set �k = 1/k from then on.
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In order to obtain a scaling relation for the average number of steps n needed to reach
fractal variation ϒn, again we use the exponential of the logarithmic capacity as a measure

of the chain size, which by (6) is of order ϒ
1/df
n , so that for n large we have

exp
n∑

k=1

�k ∼ ϒ
1/df
n (22)

which, by substituting �k given by (17) with � = 1 and again using (19), yields

n ∼ ϒ
1/df
n . (23)
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